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ABSTRACT

Direct numerical simulation and laboratory experiments are used to investigate turbulent convection

beneath a horizontal ice–water interface. Scaling laws are derived that quantify the dependence of the melt

rate of the ice on the far-field temperature of the water under purely thermally driven conditions. The scaling

laws, the simulations, and the laboratory experiments consistently yield that the melt rate increases by two

orders of magnitude, fromF101 toF103mmday21, as the far-field temperature increases from 48 to 88C. The
strong temperature dependence of the melt rate is explained by analyzing the vertical structure of the flow:

For far-field temperatures below 88C, the flow features a stably stratified, diffusive layer next to the ice that

shields it from the warmer, turbulent outer layer. The stratification in the diffusive layer diminishes as the far-

field temperature increases and vanishes for far-field temperatures far above 88C. Possible implications of

these results for ice–ocean interfaces are discussed. The drastic melt-rate increase implies that turbulence

needs to be considered in the analysis of ice–water interfaces even in shear-free conditions.

1. Introduction

Horizontal ice–water interfaces are ubiquitous in po-

lar regions. They are found at the bottom of ice shelves,

sea ice, and lake ice. In regards to ice shelves, bottom

ablation in the Antarctic has caused an increasing gla-

cier flow speed and glacier mass loss to the ocean over

recent decades (Wouters et al. 2015). In regards to sea

ice, bottom ablation in the Arctic has increased sub-

stantially in recent years (Perovich et al. 2013). The

exact rates of bottom ablation cannot always be re-

constructed from observational records and uncer-

tainties remain of order one (Notz et al. 2003). In

particular, it is not yet well understood how the turbu-

lent motion of water beneath these interfaces influences

the internal-energy flux that ablates the ice at the bot-

tom. Here, we investigate the influence of turbulence on

rates of bottom ablation of ice with laboratory experi-

ments and direct numerical simulations.

The evolution of the flow in natural systems with

horizontal ice–water interfaces is determined by several

processes: buoyancy forcing, shear forcing, the effect of

solutes, and the influence of surface roughness and

heterogeneity. Rather than trying to capture the impact

of all these processes on the interfacial internal-energy

and salt fluxes, we here instead aim at simplifying the

problem to its fundamental core. The simplified setup

that we investigate is purely thermally driven free con-

vection beneath a smooth fresh-ice–freshwater interface

considering the density anomaly of the water.

However simple, our setup directly encompasses as-

pects of the flow underneath an ice–water interface from

at least two more general systems: shear forcing and the

effect of the solute salt. Shear forcing as well as buoy-

ancy forcing create a similar vertical flow structure next

to an interface (Pope 2000; Mellado 2012). Whenever

turbulence aids the ablation of ice, a diffusive layer,

however thin, forms between the ice and the turbulent

layer irrespective of the forcing. A similar reasoning

applies to the similarities between the present freshwa-

ter setup and a setup using seawater instead. With salt,

the flow structure is qualitatively similar to the one in-

duced by a thermally driven system.When ice is ablating

on top of seawater, a lighter layer of almost freshwater

resides aloft a denser layer of saline seawater. Nonlinear

mixing of the layers can render a buoyancy reversal

close to the interface. The resulting mean-buoyancy

profile found beneath sea ice (Martin and Kauffman

1977) is similar to the mean-buoyancy profile that we

focus on here, and we will discuss possible implications

of our results of the fresh-ice–freshwater system for the

more general case of ice floating on a salty ocean.
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Martin and Kauffman (1977) examine free convection

beneath sea ice in the laboratory. They study the tem-

poral evolution of temperature and salinity profiles be-

neath floating ice. In their experiment, the ice floats on

warm and salty water that is initially at rest. They

maintain a constant far-field temperature and run the

experiment until it reaches a steady state. From their

bounded laboratory configuration and a one-dimensional

theoretical model, they find an enhancement of the melt

rate by a constant factor of about 2.5 compared to purely

diffusive energy exchange. Their finding is based on

the boundary layer structure they observe: a diffusive

layer next to the interface overlies a layer of double-

diffusive convection followed by thermal convection in

the far field.

An unbounded, quasi-steady, free-convection system

(the counterpart to a bounded, steady-state laboratory

experiment) is hard tomeasure to satisfactory resolution

in the field or laboratory. Direct numerical simulation

offers an opportunity to study detailed boundary layer

structures for free-convection systems that do not feel

any bounding geometry and do not involve any turbu-

lence model. Mellado (2012) provides the boundary

layer structure of purely buoyancy-driven free convec-

tion over a heated plate. He forces free convection

with a linear buoyancy function; thus, this work does not

account for buoyancy reversal. Further studies do ac-

count for buoyancy reversal, such as in the cloud-top

mixing layer (Siems et al. 1990; Wunsch 2003; Mellado

2010). Unfortunately, these studies do not account for

the effect of a solid surface as intrinsic to convection

beneath ice. In this paper, we extend this previous work

to include the effect of a solid surface next to a region of

buoyancy reversal, as occurs in convection beneath ice.

This study considers the melting of ice on top of

thermally driven free-convective water with laboratory

experiments and with direct numerical simulations. We

employ the laboratory experiments to ensure that the

simulations capture all relevant aspects of the physics.

We employ direct numerical simulations to overcome

resolution and size limitations of the laboratory exper-

iment and yield statistically converged boundary layer

mean profiles. From both laboratory experiment and

simulations we obtain melt rates and boundary layer

mean profiles. Based on the observed boundary layer

structure, its temporal evolution, and the underlying

dynamic, we derive an analytical expression for the melt

rate that explains laboratory and simulation results. We

then discuss our results in the context of more general

systems, investigating in particular the impact of melt-

water advection on the flow, the spatial inhomogeneity

of the melt rate, and estimating the effect of salinity on

the derived melt rates. We conclude that the turbulent

enhancement of the melt rate of ice needs to be con-

sidered even in the absence of shear.

2. Setup and methods

A mass of solid, pure ice rests on top of an initially

motionless body of pure water of fixed uniform tem-

perature T‘ (Fig. 1a). The ice mass is isothermal at the

freezing temperature of water Tice and has a smooth

surface. Hence, the ice imposes a Dirichlet boundary

condition on the temperature field of the water and a no-

slip boundary condition on the velocity field of the wa-

ter. We consider the ice–water interface together with

the water body as our system of interest.

This system is purely buoyancy driven. We define

buoyancy b as

b(T,T
‘
)5 g

r(T
‘
)2 r(T)

r(T
‘
)

, (1)

with Earth’s gravitational acceleration g and water

density r(T). Subsequently, we assume a second-order

temperature dependence in the density

r(T)5 r
m
[12b(T2T

m
)2] , (2)

with the temperature of maximum density Tm 5 3.988C,
rm5 999.96 kgm23, and a thermal expansion coefficient

b 5 27.00 3 1026 8C22. This second-order approxima-

tion yields a relative deviation from Eq. (6) of Sharqawy

et al. (2010) of less than 0.01% between 08 and 308C.
With increasing distance from the interface, the water

temperature increases from Tice at the interface to T‘ in

the far field (Fig. 1b). As the water temperature in-

creases, the density first increases (as long as T , Tm)

and then decreases (whenT.Tm; Fig. 1c). Accordingly,

the buoyancy first decreases and then increases again.

Hence, for T‘ . Tm, the buoyancy in the far field is

higher than the buoyancy closer to the interface, and the

system is convectively unstable (Fig. 1d). We are in-

terested in this convectively unstable regime.

The temperature difference DT‘ 5 T‘ 2 Tice divides

the system into two convective regimes based on DTm 5
Tm 2 Tice. For DT‘ . 2DTm, the whole column of fluid

can overturn (Fig. 1d, reddish profiles). In contrast, for

DT‘ , 2DTm, there exists a layer next to the interface

that is stably stratified (Fig. 1d, bluish profiles). This

stably stratified layer beneath the ice acts as a shield

against the warmer fluid of the convectively unstable

region, as we will show below.

The spatiotemporal evolution of the system, given as

velocity field v(x, t), temperature field T(x, t), spatial

coordinate x5 x1e11 x2e21 x3e3, ei5 «ijkejek, and time
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t, follows the evolution equations for mass, momentum,

and internal energy:

›
j
y
j
5 0, (3a)

›
t
y
i
52y

j
›
j
y
i
1 n›2j yi 2 ›

i
p1 bd

i3
, and (3b)

›
t
T52y

j
›
j
T1 k›2j T . (3c)

We have given the equations in the Boussinesq ap-

proximation. The variable n is the kinematic viscosity,

k is the thermal diffusivity, p is the modified kinematic

pressure, ›t is the temporal derivative, and ›i is the

spatial derivative in direction ei.

The spatiotemporal evolution of the system is de-

termined by the buoyancy b [Eq. (3b)]. For the analysis

of the problem, it proves useful to express the de-

pendence of the buoyancy on the temperature, given by

Eq. (1), as

b5 b
m
(u/u

m
)(22 u/u

m
) . (4)

The minimum buoyancy bm is then given by

b
m
5 g

bT2
m

r(T
‘
)

u2m

(12 u
m
)2
, g

bT2
m

r(T
‘
)
’21.13 1024 m s22.

(5)

The variable u is a normalized temperature

u(T,T
‘
)5

T2T
‘

T
ice

2T
‘

, (6)

which varies between 0 in the far field and 1 at the in-

terface. For convectively unstable conditions, T‘ . Tm,

the far-field temperature parameter

u
m
(T

‘
)5 u(T5T

m
,T

‘
)5

T
m
2T

‘

T
ice

2T
‘

(7)

varies between 0 and 1. The far-field temperature param-

eter um denotes the fraction of the temperature range [Tice,

T‘] that locally stratifies the fluid unstably, and (1 2 um)

denotes the fraction that locally stratifies the fluid stably.

The flow develops freely into the far field and does not

feel any solid boundary but the ice–water interface. For

FIG. 1. Sketch of the system studied in this work. (a) Ice rests on top of a water body (greenish). We focus on the

region limited by the white dashed line. A visualization of a turbulently mixed temperature field is exemplarily

given (dark blue). (b) The water temperature increases from the interface value Tice to the far-field value T‘. The

distance from the interface is given in units of the tank height hwater. Different colors symbolize different far-field

temperatures. The given profiles are the initial mean profiles of the numerical simulations. (c) Colored bars indicate

the temperature range of density variation that characterizes the system for a certain far-field water temperature.

(d) The resulting buoyancy profiles lead to convective instability.
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sufficiently low viscosity, the system becomes turbulent,

decorrelates from its initial state after a sufficiently long

time, and depends solely on the set of control parame-

ters fn, k, bm, umg. Dimensional analysis provides the set

of independent control parameters fPr, umg, with Pr 5
n/k. Here, we chose to nondimensionalize the system by

bm instead of by the full buoyancy difference across the

system because bm gives the convective instability

driving the flow. We constrain this investigation to wa-

terlike fluids of the fixed Prandtl number Pr 5 10.

Hence, any flow property solely depends on the gov-

erning parameter um and on the position in space and

time fum, x, tg. The fully developed turbulent system is

statistically homogeneous in horizontal directions. We

denote horizontally averaged quantities by h�i and fluc-

tuations around that mean by a prime. Horizontally

averaged statistics only depend on fum, z, tg with

z52xe3 and the origin of x chosen such that z gives the

distance from the interface. The terms um, bm, and T‘

equivalently describe the system [Eqs. (5) and (7)].

a. Laboratory experiment

The laboratory setup that mimics the system consists

of a Plexiglas tank filled with tap water, a thermistor

cascade just beneath the water surface, and an ice block

dangling on a manual tackle just above the water sur-

face. The setup resides in a cold room whose tempera-

ture can be controlled with a precision of 638C. The
water body has the dimensions (0.347m)3 and is laterally

isolated by a Styrofoam cover around the tank. The

height of the water tank is hwater 5 0.347m. Tempera-

ture changes are measured with a cascade of 23 therm-

istors. The cascade has a spacing of 7mm between the

thermistors and a total profile length of 154mm. Each

thermistor is spherical with a radius of 1mm and is

placed on the tip of a 4-mm-thick and 2-cm-long finger to

minimize the influence of the instrument body on the

flow. The precision of the temperature measurement is

at least 0.01K, while temperature changes are measured

with a response time of 2 to 4 s depending on the sign of

the temperature change. The ice block, 8- to 13-cm

thick, covers almost the entire water surface and is

prepared from distilled water prior to the experiment.

Before an experiment is conducted, we orientate the

system components and prepare the temperatures of the

water body and the cold room. We level the ice block

such that its surface can be attached evenly to the water

surface, and we displace the thermistor cascade such

that the upper thermistor is just beneath the water sur-

face. A pump mixes the water body to a homogenous

initial temperature T‘. The cold-room temperature

matches T‘ to minimize any temperature gradient be-

tween the water body and its lateral surrounding. We

keep the cold-room temperature constant at T‘ for

several hours to ensure that the ice is isothermal. The

melting of the ice due to its exposure to the cold-room

air is little compared to themelting due to its exposure to

the water body later on. When the pump stops, we await

the decay of turbulence kinetic energy for 3min and

cautiously lower the ice block via the manual tackle.

The experiment starts as soon as the ice touches the

water surface. The ice is not lowered further. The

thermistor cascade measures a temperature profile ev-

ery 5 s during the experiment run time trun. After that,

the ice block is lifted from the water surface and the

recording continues for a short while as the water is

mixed with the pump to record the final mean temper-

ature of the system Tend. This entire procedure consti-

tutes one realization of the laboratory experiment. The

horizontal position of the thermistor cascade is different

in each laboratory realization.

First, we focus on the setup of T‘ 5 58C because con-

siderably higher and lower far-field temperatures handicap

the measurement. For higher far-field temperatures, the

system evolves too quickly compared to the response time

of the thermistors. For lower far-field temperatures, the

expected temperature change in the far field is too little

compared to the signal-to-noise ratio. We record an en-

semble of 25 realizations at T‘ 5 58C and trun 5 15min to

capture the mean-temperature profile of the turbulent

system. Second, we record several ensembles of small re-

alization number (three to five) at T‘ 2 f4.5, 5, 6, 14.8g8C
and varying trun to capture the temporal bulk temperature

change of the turbulent system.

b. Direct numerical simulation

We integrate Eqs. (3) using a high-order, finite-

difference method on a collocated, structured grid. We

approximate the integration by a fourth-order Runge–

Kutta scheme and the spatial derivatives by sixth-order,

spectral-like finite differences (Williamson 1980; Lele

1992). After every integration step, a pressure solver

ensures fulfillment of the solenoidal constraint. For this

we use a Fourier decomposition along periodic hori-

zontal coordinates and a factorization of the resulting

second-order equations in the vertical coordinate

(Mellado and Ansorge 2012).

The calculations are performed on a grid of 576 grid

points in the vertical direction and 1280 grid points in

both horizontal directions. Adequacy of vertical reso-

lution, domain height, and domain width has been as-

sured so that the results discussed in this paper are

sufficiently independent of those simulation properties.

The grid spacing is uniform in the horizontal directions

and in most of the vertical direction. The resolution in

the vertical direction close to the interface, however, is

1174 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 46



increased because themainmean-temperature variation

all over the domain occurs close to the interface. This

temperature variation potentially entails the main

mean-buoyancy change, a change in the forcing of the

system from a positive to the global-extreme negative

value and back to almost zero (Fig. 1d). To fully cover

this buoyancy variation, we increase the resolution next

to the interface by a factor of 5. The regions of uniform

and adjusted resolution along the vertical direction are

gradually matched by hyperbolic tangents. Finally, the

grid in the vertical direction far from the interface is

coarsened to save computing time. This part of the do-

main serves to diminish the influence of the computa-

tional boundary on the flow.

The boundary conditions in the velocity field are no-

slip and no-penetration at the interface and free-slip and

no-penetration in the far field. The boundary conditions

in the temperature field are Dirichlet at the interface

and Neumann in the far field. The initial condition in the

temperature field is an error function of thickness d and

zero in the velocity field. The temperature field is per-

turbed close to the interface with a wavelength that

corresponds to 7d [see Mellado (2012) for details].

We simulate systems of different far-field tempera-

tures T‘ (Table 1). We study the system of DT‘ 5 2DTm

(um 5 0.5) and three systems of both higher and lower

buoyancy at the interface. The simulation of um 5 0.179

is done on an extended grid of size 2560 3 1088 3 2560

to reach higher Reynolds numbers, to increase the sta-

tistical convergence, and to calculate the melt rate more

accurately. In addition, we perform three numerical

simulations with altered flow boundary conditions to

study the influence of meltwater on the flow.

The final boundary layer height of the simulated sys-

tems z* varies between 0.12 and 1.05m. The simulations

reach Reynolds numbers w*z*/n and e2/(«n) of up to

3600 and 1000, respectively, with the turbulence kinetic

energy e, the viscous dissipation rate «, the convective

velocity scale w*, and the viscosity n.

3. Similarity of laboratory experiment and
numerical simulation

We compare an ensemble of 25 laboratory re-

alizations of T‘ 5 (5.00 6 0.01)8C to one simulation of

T‘ 5 4.988C (um 5 0.20). The simulation grid needed to

resemble a laboratory tank of domain size 0.360m is just

1024 3 384 3 1024 grid points, where we choose an as-

pect ratio of eight to one instead of one to one. Within a

horizontal cross section of 1024 3 1024 grid points, we

choose 256 equally distributed base locations to obtain

tower data measurements. The tower data consist of the

temporal evolution of the vertical temperature profile

beneath the ice interface, just as a laboratory realization

does. We qualitatively compare the phenomenology

obtained from simulation visualizations and laboratory

realizations with dyed ice, and we quantitatively com-

pare the temporal evolution of both the mean behavior

and individual tower data of the simulation and the

laboratory experiment.

Qualitatively, the structure of the boundary layer

beneath the ice in the laboratory matches the one in the

TABLE 1. Properties of the numerical simulations. Far-field temperature parameter um, far-field temperature T‘, magnitude of mini-

mum buoyancy jbmj, and Richardson number Ri0 equivalently define the simulation [Eqs. (5), (7), and (26)] and are given for the reader’s

convenience. The diffusive length scale z0 is defined in Eq. (15). The boundary layer height z* and the convective velocity scale w* are

defined in Eqs. (16) and (17), respectively. The turbulent Reynolds number Returb is the maximum value of e2/(«n) in the domain with

turbulence kinetic energy e, viscous dissipation rate «, and viscosity n. The termsReturb andw*z*n
21 aremeasures for the scale separation

in the simulations; h is the domainwide minimum Kolmogorov scale. The diffusive velocity scale is w0 5 (z0bm)
1/2. The melt rate is given

with Eq. (21). Columns 6–10 are evaluated at the final time step of the simulations. The grid size of the simulations is 12803 5763 1280.

um T‘ (8C) jbmj (m s22) Ri0 z0 (mm) z* (m) w*z*n
21 Returb h (mm) wmax

rms /w0 wf (mmday21)

0.152 4.69 3.6 3 1025 31 39 1.05 950 190 5.6 0.81 42

0.179a 4.85 0.5 3 1024 21 31 2.56 3600 950 3.8 1.27 58

0.232 5.18 1.0 3 1024 11 21 0.86 1100 200 3.4 0.95 90

0.500 7.96 1.1 3 1023 1 5.6 0.37 900 140 1.6 1.03 400

0.586 9.61 2.2 3 1023 0.5 4.0 0.29 820 120 1.3 1.01 610

0.760 16.57 1.1 3 1022 0.1 2.0 0.15 670 87 0.8 0.94 1700

1.000 T‘ bm(T‘) 0 — — 531 34 — — wf (T‘)

0.500b 7.96 1.1 3 1023 1 5.6 0.39 960 140 1.5 1.04 390

0.841b,c 25.00 3.1 3 1022 0.04 1.3 0.14 850 88 0.5 0.99 3200

0.901b,c 40.00 0.9 3 1021 0.01 0.9 0.12 1000 85 0.4 1.01 6700

a A simulation of extended size 2560 3 1088 3 2560.
b Simulations with background mean advection.
c Simulations of size 512 3 576 3 512.
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simulation (Fig. 2). Cold fluid (bright) unites more mass

per volume and congregate into thin streaks that push

downward through warmer surrounding fluid (dark).

The lowermost point of the streaks is marked by a

plumelike tip structure with vortices at their sides.

Looking at the horizontal cross section, a honeycomb

pattern is seen for both laboratory experiment and nu-

merical simulation. From the comparison of vertical and

horizontal cross sections, one observes that plumes ac-

tually form the septum of the honeycomb cells. Cold

plumes push down along the cell rim while fluid must

consequently move up in the interior of the cell. Plumes

are the dominant structures. Their movement and dif-

fusive decay mixes the water beneath the ice in the so-

called mixed layer. The mixing successively entrains

calm, warmer water from below and the colder mixed

layer broadens. Both laboratory experiments and sim-

ulations exhibit this working principle, known from the

convective boundary layer (CBL) in the atmosphere

(Stull 1988), but vertically inverted, and from Rayleigh–

Bénard convection (Chillá and Schumacher 2012).

Quantitatively, the time evolution of temperature pro-

files of individual laboratory realizations, as well as that of

individual tower data from the simulation, varies strongly

among each other. Hence, we draw the comparison on the

basis of the mean-temperature profiles instead of on the

basis of individual laboratory realizations and individual

tower data from the simulation.

The mean profiles evolve as described in the previous

paragraph: a mixed layer develops and broadens in time.

The broadening happens at the same pace in the labo-

ratory experiment as in the simulation (not shown) and

takes about 7min to cover a height of 0.40hwater, with the

tank height hwater 5 0.347m. In the mixed layer, we

find a mean temperature almost constant in time. At the

interface, the mean normalized temperature decreases

by an order of magnitude over a distance of;0.05hwater
for both laboratory and simulation. This region forms

part of what is generally referred to as ‘‘the surface

layer’’ (Stull 1988).

Differences between the laboratory experiment and

simulation exist in the boundary conditions, the initial

conditions, and the system itself. Moreover the presence

of themeasuring device alters the flow.We hence expect

some differences between the laboratory experiment

and the numerical simulations but find that such differ-

ences are statistically insignificant.

To show this, we perform aKolmogorov–Smirnov test

on the mean profiles with the following null hypothesis:

the laboratory measurements and simulation tower data

FIG. 2. Structure of the flow as retrieved from a laboratory tank (a) experiment and (b),(c) simulation. Bright fluid indicates a low

temperature compared to the temperature of the dark warmer surrounding fluid. The blue dash indicates a length of 25mm.Dashed boxes

contain a horizontal cross section (upper box) and a vertical cross section (lower box). A visualization of the temporal evolution of (c) can

be found in Keitzl et al. (2014). Note that the laboratory tank experiment visualizes a substituting setup in which—for visualization

purposes—a constant temperature cooling plate is used instead of ice.
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are drawn from the same distribution. We cannot reject

the null hypothesis on a significance level of 5% for the

regions indicated by the gray bars in Fig. 3a. The labora-

tory measurement and tower data are thus to be consid-

ered as statistically equivalent in those regions. The

regions broaden with evolving time and stretch from close

to the interface to roughly half of the mixed layer.

In summary, we find qualitative and quantitative agree-

ment between the simulation and laboratory experiment

for the given number of laboratory realizations. Both ex-

periments and simulations are used in the following section

to investigate the melt rate of the ice.

4. The melt rate

Ice melts if more internal energy per area and time

Hwater is supplied to the ice interface than can be trans-

ported away (Hice). We focus on an isothermal ice block

withHice5 0. Hence, the melt ratewf is solely determined

by Hwater, according to

w
f
5

1

r
ice
L
H

water
, (8)

where L 5 333.5 kJ kg21 is the specific energy required

to melt the ice (Frankenstein and Garner 1967), and

rice 5 916.8 kgm23 is the density of pure ice at 08C

(Pounder 1965). The internal-energy flux at the ice in-

terface Hwater originates from the evolution of the in-

ternal energy in the fluid system. The mean evolution of

the internal energy [Eq. (3c)] is

›
t
hTi(z, t)52

1

r
water

c
p

›
3
H(z, t), (9)

with

H(z, t)52r
water

c
p
[k›

3
hTi(z, t)2 hy03T 0i(z, t)]. (10)

The specific heat capacity of water is cp5 4.22kJkg21K21;

the thermal diffusivity of water is k 5 1.363 1027m2 s21

at 273.15K (Sharqawy et al. 2010) and rwater 5 r(T‘).

a. Melt rates observed in the laboratory experiment

In the laboratory experiments, we estimate the energy

fluxes and the melt rates [Eq. (8)] from the net change of

the internal energyDEint5mwatercp(Tend2T‘) over the

experiment run time trun. After the run time trun, the

initial mean bulk temperature T‘ has decreased to its

final value Tend. The net change of the internal energy

DEint is converted to the heat of fusion miceL and to

internal energy of the meltwater micecp(Tend 2 Tice).

From the integral formulation of Eq. (9) one obtains the

internal-energy balance of the system:

FIG. 3. Comparison of laboratory (blue) and simulation (black) temperature profiles.

(a) The laboratory temperature profile (blue dashed line) is averaged over 25 realizations of

T‘ 5 58C after equal elapsing times of 14min. The simulation temperature profile (black

dashed line) is obtained from a horizontal average. The black bar below the profiles indicates

the region of quantitative agreement between laboratory experiment and simulation. In these

regionswe cannot reject the null hypothesis that the laboratory ensemblemembers and themean

profile of the simulation are drawn from the same distribution according to a Kolmogorov–

Smirnov test. (b) Temporal evolution of one realization of a temperature-profile measurement

taken from the laboratory. Intense colors mark thermistors next to the interface; light colors

mark thermistors further away. C marks the time of ice–water contact, F marks the time when

turbulence approximately sets in, and Pmarks the time of external mixing with a pump. After P,

we find a temperature difference T‘ 2 Tend of the averaged mean-temperature profile with

respect to the temperature prior to the experimental conduct. (c) As in (b), taken from the

simulation. S marks the starting time of the simulation.
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)5m

ice
L1m

ice
c
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(T

end
2T

ice
) , (11)

wheremice is the mass of themelted ice, andmwater is the

mass of the water in the tank.

Equation (11) assumes that no energy flows through

water body boundaries except through the ice–water

interface. To test this assumption, we estimate the mean

energy flow through water-body boundaries other than

the ice–water interface from time series of the bulk

water temperature without ice attached on the water.

We find a relative uncertainty in DEint due to all ne-

glected mean energy fluxes of about 15%.

FromEq. (11), from the approximation that water and

ice share the same base areaA, frommice5 ricehiceA and

frommwater5 rwaterhwaterA, the height hice of themelted

ice is given as

h
ice

5 h
water

r
water

r
ice

c
p
(T

‘
2T

end
)

L1 c
p
(T

end
2T

ice
)
. (12)

Several laboratory experiments for the same tempera-

ture T‘, but with different run time trun, allow us to

estimate a melt rate wf 5 Dhice/Dtrun from the data. This

assumes a constant energy flux at the interface, which is

the leading-order behavior for free-convection systems

and which we observe for all our simulations (presented

in section 4c). The standard deviation among the cal-

culated heights at each trun is less than 13%. We obtain

themelt rateswf5 [53, 55, 136, 1260]mmday21 forT‘5
[4.5, 5, 6, 14.8]8C within the error bounds supplied in

Fig. 4 (crosses and black solid bars). We compare these

melt rates wf to the melt rates wd of a purely diffusive

experiment that has a similar boundary layer extent. To

allow for such comparison, we need an expression that

describes how the melt wd depends on boundary layer

extent, which can be obtained from the derivative of a

diffusive temperature profile Td(z):

w
d
52

r
water

r
ice

c
p

L
k›

3
hT

d
ij
d

52
r
water

r
ice

c
p
DT

‘

L

k

d

�
2erf21(2. 995)ffiffiffiffi

p
p

�
, (13)

where Td(z) is assumed to be an error function, a solu-

tion of the diffusion equation for the Dirichlet boundary

conditions Td(z 5 0) 5 Tice and Td(z / ‘) 5 T‘. The

boundary layer height d is defined based on the thresh-

old criterion [hTd(z 5 d)i 2 Tice]/DT‘ 5 0.995. In the

following, we choose d 5 hwater, so that wd represents

FIG. 4. Melt rate derived from a scalar gradient at the interface (simulation, colored dots corresponding to Fig. 1)

and derived from bulk temperature change (laboratory, crosses). Analytical melt rate wf, as given in Eq. (21) (black

solid line). Diffusive melt rates wd, as given in Eq. (13) (dotted line). The dashed line indicates the high temperature

melt-rate limit. The black dot represents the simulation um 5 1 that does not have a stable stratification next to the

interface. This simulation is exemplarily provided for a far-field temperature of T‘ 5 408C. (a) Double logarithmic

plot illustrates the power-law change over the full temperature range. (b) Linear plot illustrates the melt-rate en-

hancement in the low-temperature range. (c) As in (b), but for the high-temperature range.
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melt rates of diffusive experiments of the size of the

laboratory tank.

We find that for the same boundary layer extent, the

melt rates wf are increased by one to two orders of

magnitude compared towd (Figs. 4b,c), in contrast to the

increase by a constant factor of about 2.5 reported in

Martin and Kauffman (1977). We will elaborate on this

finding in section 5a.

b. Melt rates simulated in the numerical experiment

In the simulation, we evaluate the melt rates from the

horizontally averaged energy flux Hwater according to

Eqs. (8) and (10). At the interface (z 5 0) one finds

H
water

[H(z, t)j
z50

52r
water

c
p
k›

3
hTi . (14)

We obtain melt rates for several simulations of vary-

ing far-field temperature (Table 1, Fig. 4a, dots). We can

infer two important results: First, the melt rates of the

simulations and of the laboratory experiments match

within the limits of their respective uncertainties. [The

relative error of themelt rates from the simulation is less

than 10% due to varying initial conditions (Mellado

2012).] Second, the melt rates depend strongly on the

far-field temperature. From temperatures T‘ 5 3.988C
to T‘ 5 5.208C, melt rates increase strongly from dif-

fusive values of 11mmday21 (dashed line) up to

86mmd21 (Fig. 4b, blue dot), that is, a factor of ’8.

From temperatures of T‘ 5 178C to T‘ 5 408C, melt

rates increase from 1.7 to 7mday21 (Fig. 4c, gray dot

and plus), that is, a factor of ’4.

The simulation of um 5 1 cannot be assigned to a

definite far-field temperature; um 5 1 is the limit of high

far-field temperatures [Eq. (7)] and of negligible buoy-

ancy reversal. For this simulation, we find the minimum

buoyancy directly at the wall (Fig. 1d, dashed line). This

situation is reminiscent of the free convection over a

heated plate (Mellado 2012), where buoyancy increases

linearly with the stratifying agent from the minimum

value at the wall to the far field.We provide themelt rate

derived from our simulation of um 5 1 exemplarily for a

far-field temperature of T‘ 5 408C, for which we expect

the assumption of negligible buoyancy reversal to be a

sufficiently good approximation (Fig. 4, plus).

5. The energy flux and the flow structure

The partitioning of the internal-energy flux according

to Eq. (10) into a molecular flux 2cprk›3hTi and a tur-

bulent flux cprhy03T 0i further confirms the working

principle described in section 3; the positive turbulent

flux, plotted in Fig. 5, shows that negative temperature

fluctuations occur with descending motion, and positive

temperature fluctuations occur together with ascending

motion in most of the domain (dashed line). In other

words, cold water descends, warm water ascends. At

the interface, the no penetration condition suppresses

the turbulent flux, and the molecular flux remains as the

only transport mechanism (dotted line). The total en-

ergy flux (solid) is sustained by turbulent entrainment of

warm far-field water at the lower boundary of the mixed

layer. As the mixed layer broadens with time, it entrains

warm water at a rate that yields a spatially constant

energy flux throughout the mixed layer (solid line). The

energy flux throughout the system determines the energy

flux at the interface Hwater. The constant flux foretells,

according to Eq. (9), a steady mean-temperature profile

despite cooling from the interface. A large extent of the

system is hence in dynamic equilibrium (Mellado 2012).

As a consequence, we expect a steady temperature gra-

dient at the interface, that is, a constant melt rate.

FIG. 5. Simulation internal-energy flux and velocity fluctuation at final simulation time. Colors indicate different

far-field temperatures according to Fig. 1. Molecular (dotted) and turbulent (dashed) fluxes contribute to the total

internal-energy flux (solid). (a) Internal-energy flux with abscissa normalized by the diffusive scale. (b) Internal-

energy flux with abscissa normalized by the convective scale. (c) Vertical velocity fluctuation, normalized by the

convective scale.
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The illustrated working principle and the internal-

energy flux partition warrant a separate description of

the diffusion-dominated inner layer and the turbulence-

dominated mixed layer.

a. The diffusion-dominated inner layer

Next to the interface, the normalized temperature

changes by an order of magnitude over a diffusion-

dominated layer of thickness z0. The layer is stably strat-

ified except for an unstably stratified fraction at its lower

bound. This unstable fraction tends to overturn and hence

tends to thin the diffusion-dominated layer. Such a situ-

ation is reminiscent of the buoyancy-reversal configura-

tion studied, for example, by Siems et al. (1990) and

Mellado (2010). The overturning fraction covers the

normalized-temperature range [0, 2um] [Eq. (4) and

Fig. 1d] and thus extends over a distance 2umz0. A buoy-

ancy perturbation within 2umz0 accelerates the flow pro-

portionally to bm, whereas the viscosity decelerates the

flow proportionally to n. The time scale of the perturba-

tion growth is tbuoy 5 (n/bm)/(2umz0) (Turner 1973). On

the other hand, diffusion broadens z0 at a rate k/z0. The

time scale of diffusive advancement over the overturning

fraction 2umz0 is hence tdiff 5 (2umz0)/(k/z0). While the

diffusive advancement increases z0, the buoyancy per-

turbation accelerates fluid away from the region and de-

creases z0. The critical depth at which the rate of thinning

is equal to the rate of broadening, tdiff 5 tbuoy, marks the

extent of the diffusion-dominated layer z0:

z
0
5

10

(2u
m
)2/3

Pr1/3(k2/jb
m
j)1/3 . (15)

The layer of depth z0 is ‘‘the diffusive sublayer,’’ a part of

the surface layer that has been introduced in the previous

section. The factor 10 gives the commonly used criticality

for this Rayleigh number criterion. The depth z0 is in-

dependent of time; the diffusive sublayer has a fixed extent.

b. The turbulence-dominated mixed layer

Themixed layer, on the contrary, is unsteady; it broadens

in time. Still, some statistical properties behave self-

similarly when normalized with a boundary layer height

z*5
1

H
water

ð‘
0

H (hT 0y03i)hT 0y03i dz (16)

(Fig. 5b) and a convective velocity scale

w3

*5

ð‘
0

H (hb0y03i)hb0y03i dz (17)

(Fig. 5c), where H is the Heaviside function. This ex-

pression for the convective velocity scale w* is obtained

from the inviscid scaling of the viscous dissipation rate

«}w3

*z
21

* (Pope 2000) and the observation that

ð‘
0

«dzð‘
0

hb0y03i dz
’ 0. 7 (18)

in our simulations. This result implies that the viscous

dissipation rate « balances a large constant fraction of

the turbulent buoyancy production hb0y03i.

c. The energy flux of fully developed systems

After an initial transient, the energy flux of all simu-

lations decays toward a constant value (Fig. 6). The

warmer the far-field water is, the larger the energy flux.

The energy flux in terms of the temperature gradient

ranges over more than one order of magnitude, from

2.6 3 102 Km21 at T‘ ’ 4.88C to 3.7 3 103 Km21 at

T‘ 5 9.68C. Much of this dependence on T‘ can be ex-

plained from the previous analysis of the diffusion-

dominated inner layer. From this analysis, we know

that this gradient is described to first order by a tem-

perature drop of DT‘ over a length z0:

›
3
hTi(z, t)j

z50
5 f (u

m
)DT

‘
z21
0 , (19)

with the proportionality constant f only dependent on

the far-field temperature parameter um. Figure 6b con-

firms this estimate, although f still varies within the in-

terval [1,0; 2.2].

So far, the diffusive length scale z0 has been derived as

the critical depth at which molecular diffusion and buoy-

ancy are in balance. This reasoning was inspired by the

analogy between this study and the cloud-top mixing

layer. The system in this study, however, has a solid wall

next to the diffusive sublayer. Hence, we attribute the

variation f of the normalized temperature gradient at the

wall (Fig. 6) to the presence of thewall. In the absence of a

theoretical description of the influence of the wall, we

suggest accounting for it by an empirical first guess:

f (u
m
)5 22 u

m
(20)

(Fig. 6, dotted line).

6. The melt rate as a function of the far-field
temperature

The previous results are now combined to give an

analytical expression for the melt rate of a thermally

driven fresh-ice–freshwater interface for DT‘ . DTm.

Substituting the definition of z0 [Eq. (15)] into the flux
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parameterization [Eq. (19)], the melt rate, given by Eqs.

(8) and (14), can be written as

w
f
5w

f ,0

"
(T

‘
2T

m
)2

DT
‘
DT

m

#2/3�
DT

‘
1DT

m

DT
m

�
, (21)

where Eqs. (5), (7), and (20) have been used to express

the dependency in terms of T‘ instead of um. The pre-

factor is

w
f ,0

5

�
22

103Pr

�1/3
r
water

r
ice

c
p
DT

m

L

�
g
bT2

m

r
water

k

�1/3

5 2. 153 1026 m s21 , (22)

with Pr 5 10 (Fig. 4, black solid line). The term wf,0

corresponds to 1.863 102mmday21. Note that in nature

Pr 5 Pr(T) and varies from 13.18 to 5.40 in the relevant

temperature range of 08 to 308C (Sharqawy et al. 2010).

The melt rates of Eq. (21) match the melt rates esti-

mated in the laboratory experiment and in the simula-

tions. Equation (21) seems to slightly underestimate the

simulation results for low far-field temperatures (Fig. 4b),

but not all these simulations have yet completely reached

their steady behavior.

The enhancement of themelt ratewf/wd increases by a

factor of 40 as the far-field temperature increases from

48 and 88C (Fig. 4b). The enhancement of the melt rate

increases by a factor of about 1.5 as the far-field tem-

perature increases from 208 to 408C (Fig. 4c). Thus, the

relative enhancement of the melt rates with far-field

temperature decreases for increasing temperature.

The comparison of Eq. (21) to the corresponding ex-

pression of free convection without buoyancy reversal

reveals the dynamics of the system. With Eqs. (5), (8),

and (14) and the diffusive length scale in free convection

without buoyancy reversal, zdiff 5 (k2/jbmj)1/3, one finds

w
f
}

�
T
‘
2T

m

DT
m

�2/3DT
‘

DT
m

. (23)

In the high temperature limit, (T‘2Tm)/DTm� 1, we

obtain (DT‘/DTm)
5/3 from Eq. (23), and we also obtain

(DT‘/DTm)
5/3 from Eq. (21) (Fig. 4, dashed line). Thus,

the high temperature limit of Eq. (21) corresponds to the

behavior found for the heated plate, where no stable

stratification is present. We conclude that the shielding

of the interface by the stable stratification next to it ef-

fectively vanishes for T‘ � Tm.

In the low temperature limit, (T‘ 2 Tm)/DTm , 1, we

obtain [(T‘ 2 Tm)/DTm]
2/3 from Eq. (23) in contrast to

[(T‘ 2 Tm)/DTm]
4/3 from Eq. (21). Thus, the shielding of

the interface—incorporated in Eq. (21) but not in Eq.

(23)—diminishes the melt rate by a power of two if it is

expressed as a function of the relative temperature dif-

ference (DT‘ 2 DTm)/DTm , 1.

7. Discussion

a. The influence of meltwater on the melt rate

When ice melts, it forms meltwater of T 5 08C. Re-

cently formed meltwater does not possess any kinetic

energy and thickens the diffusive sublayer in which the

FIG. 6. Melt rates given as the interfacial temperature gradient in units of DT‘/z0. (a) All

simulations seem to approach a normalized temperature gradient between one and two. Colors

indicate different far-field temperatures according to Fig. 1. (b) Temperature gradient at final

simulation time over the far-field temperature parameter um, defined in Eq. (7), and f(um)

(dotted line).
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stable stratification occurs. Thus, meltwater increases

the shielding of the ice from rising warm fluid and di-

minishes the melt rate. This describes a negative feed-

back. We now assess its strength.

In a frame of reference that moves with an interface

melting at speed wice, the formation of meltwater ap-

pears as vertical background mean advection. The cor-

responding advection velocity is

y
int

52
r
ice

r
water

w
ice
. (24)

In principle, wice depends on time and on the position

within the interface. We have seen already that the time

dependence of the mean value vanishes after an initial

transient, when the system is freely developing (Fig. 6).

For now, we also assume no dependence on the position

within the interface, but we will assess this assumption in

the next section.

With constant yint, the moving frame of reference is

still an inertial system. The governing Eqs. (3) still apply,

but different boundary conditions need to be consid-

ered. Instead of no-slip, no penetration boundary con-

ditions, the system imposes no-slip, constant velocity

boundary conditions yi(z 5 0) 5 yintdi3.

Weobtain an estimate for the influence of the constant-

velocity boundary condition on the melt rate from the

comparison of the advection to the diffusion flux at the

interface using wice 5 wf in Eq. (24):

y
int
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ice
2T
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3
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‘
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p
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p

L
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ice
2T

‘
) . (25)

For far-field temperatures approaching Tm, the estimate

approaches (cp/L)(Tice 2 Tm) ’ 1/20 and diverges for

high far-field temperatures (Fig. 7, line). The divergence

for high far-field temperatures exposes that the estimate

of Eq. (25) does not account for the full feedback

mechanism described above.Meltwater cannot diminish

the melt rate infinitely but only diminishes it as long as

ice is melting. Here, we only considered a fixed constant

velocity boundary condition with wice determined from

Eq. (21). So Eq. (25) is merely a maximum estimator to

the feedbackmechanism, andwe expect to find a smaller

diminution in practice than estimated here.

To verify these estimates, we conduct a set of three

simulations at temperatures T‘ 2 f8, 25, 40g8C that ac-

count for the meltwater formation with yint set accord-

ingly.We compare themelt rates of these simulations ~wf

to the analytical melt rate wf obtained from Eq. (21) as

( ~wf 2wf )w
21
f . The values range within those of the an-

alytical maximum estimator [Eq. (25)] and confirm the

diminishing effect of meltwater on wf(T‘) (Fig. 7,

dashed line). The simulated diminution and Eq. (25)

follow a similar dependence on T‘, with an offset of

’28% and a shift of’0.06um. Hence, the velocity yint of

each of the three simulations was systematically chosen

too high to correctly represent reality. Smaller velocities

yint would in fact diminish the melt rate less and yield

melt rates closer to Eq. (21).

We find the numerical estimate in agreement with the

laboratory experiments. We did not observe a pro-

nounced signature of the meltwater in the flow structure

as compared to the simulations with no penetration

boundary conditions.

We conclude that the effect of meltwater formation

can at least be neglected for far-field temperatures T‘ ,
208C (um 5 0.8). Within this limit the presented melt-

rate equation [Eq. (21)] holds with a diminution of less

than 10%due to the influence ofmeltwater (Fig. 7, black

dashed lines). For far-field temperatures T‘ � 208C,
for which the influence of the meltwater is significant,

we expect the feedback to yield a temperature depen-

dence in between wf } DT‘ (diffusive) and wf }DT5/3
‘

(turbulent).

b. Spatial inhomogeneity of the melt rate

The temperature gradient at the interface (Figs. 8a,b)

varies in space (x1, x2). We now assess this variation of

the melt rate around its mean value [Eq. (21)] on the

basis of the probability density function (pdf; Fig. 8c).

The ensemble of pdfs for different far-field tempera-

tures exhibits two main modes of different characteris-

tic. The first mode is dominant in pdfs of low far-field

temperatures, represents melt rates smaller than the

mean, and has a relative standard deviation of 10%. The

second mode is dominant in pdfs of high far-field tem-

peratures, represents the mean, and has a relative

FIG. 7. Estimates of the influence of meltwater formation at the

interface on the melt rate. (black) Analytical estimate [Eq. (25)].

(crosses) Numerical estimate derived from comparison between

analytical melt rates and melt rates obtained from simulations

with background mean advection. (dashed lines) Guidelines for

the eye.
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standard deviation of 60%. In the diffusive limit, that is

in the absence of convection, one expects to find a pdf

that is a delta function at h›3Tijz50. The first mode is

considerably narrower than the second mode and yields

absolute melt rates close to those of purely diffusive

melting (Fig. 4). We refer to the first mode as the dif-

fusive mode. The second mode at the center of the pdf

resembles the melt rate in the high temperature limit

um 5 1 (Fig. 1d, dashed curve; cf. Fig. 8c, black). This

mode is purely convection dominated, as can be inferred

from the interface pattern (Fig. 8b). We refer to the

second mode as the turbulent mode.

With increasing far-field temperature, we observe a

shift of the main contribution to the pdf from the

diffusive mode to the turbulent mode. This transition is

in line with the mechanism proposed so far; for low far-

field temperatures, a strong stable stratification close to

the interface shields the ice from the rising warm tur-

bulent water. Only a few rising plumes manage to in-

trude this shield and enhance themelting at the interface

locally (Fig. 8a). This local turbulent intrusion contrib-

utes to the pdf at values of up to several times larger than

the first mode. For high far-field temperatures, the

strength of the stable stratification is not sufficient to

shield the ice anymore. The increasing contribution of

the turbulent mode broadens the absolute bandwidth of

the pdf (not shown) and shifts the diffusive mode to

lower relative values. As the importance of the diffusive

FIG. 8. Dependence of the melt rate on the position within the interface [›3Tjz50(x1, x2)/h›3Tjz50i] for
(a) um 5 0.15, and (b) um 5 0.59. (c) Probability density function of ›3Tjz50/h›3Tjz50i.
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mode ceases, the relative bandwidth of the pdf reduces.

Then, the ice is immediately exposed to rising, warm tur-

bulent plumes, and we find an interface pattern known

from the turbulent free-convective motion (Fig. 8b).

We found in the last section that the influence of the

meltwater formation is negligible for low far-field tem-

peratures. For increasing far-field temperatures, the

shielding effect of the meltwater becomes more rele-

vant, according to Eq. (25). Based on this result, we can

infer that the maintenance of a spatially resolved yint(x1,

x2) in section 7a would diminish the high temperature

end of the pdf more than it would diminish the low

temperature end of the pdf. This would homogenize the

interface pattern found in Fig. 8b and would narrow the

bandwidth of the probability density function in Fig. 8c.

c. Application of this work to the ice–ocean interface

The motivation to study the present setup has been its

structural similarity to the sea-ice–ocean interface and

to the ice-shelf–ocean interface. The question arises of

how much information can be transferred from our

findings to such interfaces. We are aware that ice–ocean

interfaces do not just melt but ablate in the interplay of

differently diffusing salinity and temperature. Still, we

use ourmodel as a simplified approach and focus only on

the shape of the mean-buoyancy profile.

The process-based analysis, used to derive the scaling

laws of the inner layer, suggests that the strength of the

stable-stratification shield beneath the ice characterizes

the flow. The stable stratification has shown to shield the

ice for all b(z5 0). bm. We define the relative strength

of the shielding as the strength of the stable stratification

Db 5 b(z 5 0) 2 bm compared to the strength of the

buoyancy forcing bm (Fig. 1d). This is effectively the

Richardson number

Ri
0
5
Dbz

0

w2
0

5
Dbz

0

jb
m
jz

0

5
b(z5 0)

jb
m
j 1 1 (26)

that describes the ratio between the potential energy

that a fluid particle requires in order to overcome the

diffusive shield Db of thickness z0 and the kinetic energy

w2
0 that a fluid particle acquires in free fall with an ac-

celeration bm over a distance z0.

Martin andKauffman (1977) study the case of the sea-

ice–ocean interface in a laboratory tank experiment.We

derive b(z 5 0) ’ 0.1385m s22 from their salinity and

temperature profiles given in Fig. 2e and Eq. (9) of their

study together with Eq. (1) of this study. (The zero-order

density is taken as 103 kgm23 and not as 102 kgm23 as

given in their study.)With a redefinition of theminimum

buoyancy that accounts for the influence of temperature

and salinity,

b
m
5 g

r(S
‘
,T

ice
)2 r(S

‘
,T

‘
)

r(S
‘
,T

‘
)

; (27)

using the far-field salinity S‘ taken from their salinity

profile, we find bm ’ 0.0011m s22 and Ri0 ’ 129. If we

use the boundary conditions Tice, S‘, and T‘ as pro-

vided from their one-dimensional theoretical model,

we consistently obtain Ri0’ 136 for their setup. In the

case studied in this work, we find a similarly strong

stable stratification for a far-field temperature of

T‘ 5 4.338C.
According to our results, turbulence enhances the

melt rate by a factorwf(T‘ 5 4.338C)/wd(T‘ 5 4.338C)’
3.1. Martin and Kauffman (1977) determined an en-

hancement of the melt rate by a constant factor of

about 2.5. Given that we consider melt-rate variations

over two orders of magnitude (Fig. 9a), this is in fairly

good agreement despite the neglect of the influence

of salt.

As opposed to the finding of Martin and Kauffman

(1977), we find that turbulence does not enhance the

melt rate by a constant factor, but by a factor that de-

pends on the relative strength of the shielding, the

Richardson number Ri0. With the parameter range of

far-field temperature and salinity that they provide from

their model (Fig. 9, therein), Ri0 varies between 102 and

103 in their study. This order-of-magnitude variation in

Ri0 translates to a variation in the turbulent enhancement

wf/wd by a factor of approximately 4 according to Fig. 9a

(herein). For T‘ 2 [10, 30] 8C, Ri0 even yieldsO(101); the

turbulent enhancement of the melt rate for Ri0 5 O(101)

can be twice that of Ri05 136. We conjecture that Martin

and Kauffman (1977) would have found a turbulent en-

hancement of themelt rate by a factor of 5 for significantly

increased far-field temperatures.

In nature, the flow beneath an ice interface is driven

by several mechanisms. To allow for the comparison of

our results to those of systems with different driving

mechanisms, such as shear (McPhee 1983) or internal

heating from radiation (Mironov et al. 2002), we pro-

pose to use the Richardson number

Ri*5
Dbz

0

w2

*
(28)

instead of T‘ as the independent variable. The direct

link of the buoyancy-forcing strength bm to the velocity

scale of the system w0 is replaced by the more generic

convective velocity scale of the system w*, as defined in

Eq. (17). The effect of T‘ is still retained in Db. This
Richardson number describes the importance of the

shielding by the diffusion-dominated, inner-layer rela-

tive to the specific kinetic energy contained in the
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turbulence-dominated mixed layer (Fernando and Hunt

1997). One could thus interpret the simulations of dif-

ferent far-field temperatures as simulations of fixed far-

field temperature but different Ri* (Fig. 9b). From a

linear fit of the final simulation values log(wf/wd) over

log(Ri*), we conjecture that the melt rate follows Ri* as

w
f
}Ri20.42

* . (29)

8. Conclusions

We have evaluated direct numerical simulations

against laboratory experiments of turbulent convection

beneath a horizontal ice–water interface. The structure

of the flow differs insignificantly between the laboratory

experiment and the simulations, and themelt rates agree

quantitatively. We have thus complemented the tem-

perature profile of the laboratory experiment with the

temperature and flow fields of the simulation. Based on

this data, we have derived, from first principles, an an-

alytical expression for the melt rate of ice wf under

purely thermally driven conditions.

The simulations show that molecular diffusion sets

and limits the energy exchange at the ice interface for all

far-field temperatures. For far-field temperatures below

88C, a stably stratified diffusive layer shields the ice from

the turbulent outer layer. The thickness of the stably

stratified layer is z0 } (k2/jbmj)1/3, with a buoyancy

anomaly bm 5 b(T 5 Tm), Tm 5 3.988C, and buoyancy

b defined with respect to the density in the far field. The

flow structure is similar to that seen in cloud-top mixing

layers. With increasing far-field temperature T‘, the

stably stratified shield diminishes. For far-field temper-

atures far above 88C, the stable stratification has effec-

tively disappeared. Then the flow is similar to that found

in free convection over a heated plate but upside down,

with a diffusive layer thinner than the stably stratified

diffusive layer.

The understanding of the flow structure is used to

quantify the energy exchange at the ice–water interface.

We provide in Eq. (21) an explicit parameterization of

wf that only depends on T‘, and we give wf as a function

of Ri* in Fig. 9b. The Richardson number Ri* 5
Dbz0/w2

* quantifies the strength of the stably stratified

shield next to the ice with respect to the strength of

turbulence. The buoyancy difference Db 5 b(z 5 0) 2
bm is defined with the buoyancy at the interface b(z5 0).

Based on the dependence of the melt rate on the

far-field temperature T‘, three regimes can be distin-

guished: a linear dependence in the diffusive regime

DT‘ , DTm, a dependence wf } (T‘ 2 Tm)
5/3 in the high

temperature limit T‘ � 88C, and a dependence wf }
(T‘ 2 Tm)

4/3 in between. We find that the influence of

meltwater on the melt rate can be neglected for far-field

temperatures T‘ , 208C.

FIG. 9. Turbulent enhancement of the melt rate compared to the diffusive melt rate wd

[Eq. (13)] (a) over Richardson number Ri0 [Eq. (26)] with the simulations (dots), laboratory

experiments of this study (crosses), Eq. (21) (solid), and the study of Martin and Kauffman

(1977) (black dot: laboratory experiment, dashed line: one-dimensional theoretical model).

Colors indicate different far-field temperatures according to Fig. 1. (b) Turbulent enhancement

of the melt rate over the Richardson number Ri* [Eq. (29)]. Crosses indicate the temporal

evolution toward the final simulation time (dots). The dotted line is a linear fit of the final

simulation values log(wf /wd) over log(Ri*).
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In contrast to previous work, we find a turbulent en-

hancement of the melt rate by one to two orders of

magnitude for a given boundary layer depth. Hence, our

findings imply that turbulence needs to be considered in

the analysis of ice–water dynamics even in shear-free

conditions to obtain accurate ice-bottom melt rates.
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APPENDIX

The Effective Buoyancy Flux

Commonly, a relevant buoyancy flux scale of a free-

convection systemBeff is known a priori and is then used

in combination with the boundary layer height z* to

construct a velocity scale from (Beffz*)
1/3 (Deardorff

1970). In this work, however, a relevant buoyancy flux

scale is not known a priori, nor is it readily evident from

the internal-energy fluxHwater via a buoyancy parameter

that relates temperature and buoyancy [Eq. (5)]. Hence,

we define an effective buoyancy flux by

B
eff

5
w3

*
z*

. (A1)

For researchers interested in similar systems, we docu-

ment that Beff ranges between 0.1 and 0.4 in units of the

diffusion-dominated buoyancy flux of free-convection

systems (b4
mk)

1/3. As a function of um, Beff decreases by a

factor of 4 from the low temperature range to the high

temperature limit, and Beff is found to be constant in

time, once the mixed layer is developed.

By definition of Eq. (A1), the effective buoyancy flux

relates to the energy flux Hwater as

H
water

5B
eff

ð‘
0

H (hT 0y03i)hT 0y03i dzð‘
0

H (hb0y03i)hb0y03i dz
(A2)

The linear relationship Hwater/Beff ’ 0.55umT‘/bm is

empirically determined. With Eqs. (5), (7), (A1), and

(A2), it yields

H
water

5a
T

w3

*
z*

DT
m

DT
‘
2DT

m

, and (A3a)

a
T
5 8. 33 109 W s3 m24 . (A3b)

The termHwater is thus obtainable for systems of known

far-field temperature T‘ once estimates for the bound-

ary layer height z* and the convective velocity w* are

provided.

REFERENCES

Chillá, F., and J. Schumacher, 2012: New perspectives in turbulent

Rayleigh-Bénard convection. Eur. Phys. J. E, 35, 58, doi:10.1140/
epje/i2012-12058-1.

Deardorff, J. W., 1970: Convective velocity and temperature scales

for the unstable planetary boundary layer and for Rayleigh

convection. J. Atmos. Sci., 27, 1211–1213, doi:10.1175/

1520-0469(1970)027,1211:CVATSF.2.0.CO;2.

Fernando, H. J. S., and J. C. R. Hunt, 1997: Turbulence, waves

and mixing at shear-free density interfaces. Part 1. A the-

oretical model. J. Fluid Mech., 347, 197–234, doi:10.1017/

S0022112097006514.

Frankenstein, G., and R. Garner, 1967: Equations for determining

the brine volume of sea ice from20.58 to222.98C. J. Glaciol.,

6, 943–944.

Keitzl, T., D. Notz, and J.-P. Mellado, 2014: How fast does ice

melt from below? 67th Annual Meeting of the American

Physical Society Division of Fluid Dynamics, Boston,

MA, American Physical Society, V0020, doi:10.1103/

APS.DFD.2014.GFM.V0020.

Lele, S. K., 1992: Compact finite difference schemes with spectral-

like resolution. J. Comput. Phys., 103, 16–42, doi:10.1016/

0021-9991(92)90324-R.

Martin, S., and P. Kauffman, 1977: An experimental and theoretical

studyof the turbulent and laminar convection generated under a

horizontal ice sheet floating on warm salty water. J. Phys.

Oceanogr., 7, 272–283, doi:10.1175/1520-0485(1977)007,0272:

AEATSO.2.0.CO;2.

McPhee, M. G., 1983: Turbulent heat and momentum transfer in the

oceanic boundary layer under melting pack ice. J. Geophys.

Res., 88, 2827–2835, doi:10.1029/JC088iC05p02827.

Mellado, J. P., 2010: The evaporatively driven cloud-topmixing layer.

J. Fluid Mech., 660, 5–36, doi:10.1017/S0022112010002831.

——, 2012: Direct numerical simulation of free convection over a

heated plate. J. Fluid Mech., 712, 418–450, doi:10.1017/

jfm.2012.428.

——, and C. Ansorge, 2012: Factorization of the Fourier transform

of the pressure-Poisson equation using finite differences in

colocated grids. Z. Angew. Math. Mech., 92, 380–392,

doi:10.1002/zamm.201100078.

Mironov, D., A. Terzhevik, G. Kirillin, T. Jonas, J. Malm, and

D. Farmer, 2002: Radiatively driven convection in ice-covered

lakes: Observations, scaling, and a mixed layer model.

J. Geophys. Res., 107 (C4), doi:10.1029/2001JC000892.

Notz, D., M. G. McPhee, M. G. Worster, G. A. Maykut, K. H.

Schlnzen, and H. Eicken, 2003: Impact of underwater-ice

1186 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 46

mailto:publications@mpimet.mpg.de
mailto:publications@mpimet.mpg.de
http://dx.doi.org/10.1140/epje/i2012-12058-1
http://dx.doi.org/10.1140/epje/i2012-12058-1
http://dx.doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2
http://dx.doi.org/10.1017/S0022112097006514
http://dx.doi.org/10.1017/S0022112097006514
http://dx.doi.org/10.1103/APS.DFD.2014.GFM.V0020
http://dx.doi.org/10.1103/APS.DFD.2014.GFM.V0020
http://dx.doi.org/10.1016/0021-9991(92)90324-R
http://dx.doi.org/10.1016/0021-9991(92)90324-R
http://dx.doi.org/10.1175/1520-0485(1977)007<0272:AEATSO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1977)007<0272:AEATSO>2.0.CO;2
http://dx.doi.org/10.1029/JC088iC05p02827
http://dx.doi.org/10.1017/S0022112010002831
http://dx.doi.org/10.1017/jfm.2012.428
http://dx.doi.org/10.1017/jfm.2012.428
http://dx.doi.org/10.1002/zamm.201100078
http://dx.doi.org/10.1029/2001JC000892


evolution on Arctic summer sea ice. J. Geophys. Res., 108,

3223, doi:10.1029/2001JC001173.

Perovich, D. K., J. Richter-Menge, B. C. Elder, C. Polashenski,

T. Arbetter, and O. Brennick, 2013: It is the North Pole: Sea

ice observations at the North Pole Environmental Observa-

tory. 2013 Fall Meeting, San Francisco, California, Amer.

Geophys. Union, Abstract 31, C31A-0621.

Pope, S. B., 2000: Turbulent Flows. Cambridge University Press,

802 pp.

Pounder, E. R., 1965: The Physics of Ice. Pergamon Press, 151 pp.

Sharqawy, M. H., J. H. Lienhard, and S. M. Zubair, 2010: Ther-

mophysical properties of seawater: A review of existing cor-

relations and data. Desalin. Water Treat., 16, 354–380,

doi:10.5004/dwt.2010.1079.

Siems, S. T., C. S. Bretherton, M. B. Baker, S. Shy, and R. E.

Breidenthal, 1990: Buoyancy reversal and cloud-top entrainment

instability.Quart. J. Roy. Meteor. Soc., 116, 705–739, doi:10.1002/

qj.49711649309.

Stull, R. B., 1988:An Introduction to Boundary LayerMeteorology.

Kluwer Academic Publishers, 666 pp.

Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge Uni-

versity Press, 367 pp.

Williamson, J. H., 1980: Low-storage Runge-Kutta schemes.

J. Comput. Phys., 35, 48–56, doi:10.1016/0021-9991(80)90033-9.
Wouters, B., A. Martin-Espaol, V. Helm, T. Flament, J. M. van

Wessem, S. R. M. Ligtenberg, M. R. van den Broeke, and J. L.

Bamber, 2015: Dynamic thinning of glaciers on the southern

Antarctic Peninsula. Science, 348, 899–903, doi:10.1126/

science.aaa5727.

Wunsch, S., 2003: Stochastic simulations of buoyancy-reversal

experiments. Phys. Fluids, 15, 1442–1456, doi:10.1063/

1.1572160.

APRIL 2016 KE I TZL ET AL . 1187

http://dx.doi.org/10.1029/2001JC001173
http://dx.doi.org/10.5004/dwt.2010.1079
http://dx.doi.org/10.1002/qj.49711649309
http://dx.doi.org/10.1002/qj.49711649309
http://dx.doi.org/10.1016/0021-9991(80)90033-9
http://dx.doi.org/10.1126/science.aaa5727
http://dx.doi.org/10.1126/science.aaa5727
http://dx.doi.org/10.1063/1.1572160
http://dx.doi.org/10.1063/1.1572160

